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Abstract

A coupled mode system is derived to investigate a three-wave parametric instability

leading to energy transfer between co-propagating laser beams crossing in a plasma

flow. The model includes beams of finite width refracting in a prescribed transverse

plasma flow with spatial and temporal gradients in velocity and density. The result-

ing paraxial light equations are discretized spatially with a Crank-Nicholson-type

scheme, and these algebraic constraints are nonlinearly coupled with ordinary differ-

ential equations in time that describe the ion acoustic response. The entire nonlin-

ear differential-algebraic system is solved using an adaptive, backward-differencing

method coupled with Newton’s method. A numerical study is conducted in two di-
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mensions that compares the intensity gain of the fully time-dependent coupled mode

system with the gain computed under the further assumption of a strongly-damped

ion acoustic response. The results demonstrate a time-dependent gain suppression

when the beam diameter is commensurate with the velocity gradient scale length.

The gain suppression is shown to depend on time-dependent beam refraction and

is interpreted as a time-dependent frequency shift.

Key words: laser plasma interaction, forward Brillouin scattering, numerical

algorithms, paraxial wave equation, coupled mode equations, differential-algebraic

systems
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1 Introduction

[Fig. 1 about here.]

Laser-plasma interactions that lead to a resonant transfer of energy between

crossed laser beams could affect indirect-drive inertial confinement fusion ex-

periments to be performed at the National Ignition Facility (NIF) [1]. In such

experiments, dozens of beams will cross in the plasma flowing supersonically

from the hohlraum laser entrance hole (LEH). Inter-beam energy transfer
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could redistribute the illumination within the hohlraum, adversely affecting

the implosion symmetry required to achieve fusion.

The seminal work on inter-beam power transfer concerned beams of different

frequencies crossing at a small angle in a stationary homogeneous plasma [2].

The transfer takes place through the well-known stimulated Brillouin scatter-

ing process wherein the ponderomotive force of the two laser beams resonantly

drives an ion acoustic wave at the difference frequency and the wavevector of

the two laser beams. Such a transfer process was demonstrated experimentally

by comparing the power transmitted by a lower-frequency “probe” laser beam

in the presence of a higher-frequency “pump” laser beam to the power trans-

mitted either when the pump beam was absent or when the beam frequency

difference failed to satisfy the forward Brillouin resonance condition of the

transfer [3,4].

Plasma flow can both detune the resonance when the laser beams have differ-

ent frequencies or allow the interaction to occur when the beams have equal

frequencies. When a plasma flow exists in which the velocity component in the

ion acoustic wave direction is the plasma sound speed, but of opposite sign,

the driven ion acoustic wave becomes a standing wave in the lab frame. In

such a configuration, the stationary density grating imposed by the ion acous-

tic wave is wavenumber-matched to Bragg (Brillouin) scatter energy from the

upstream pump beam to the downstream probe beam.

The power transfer in flowing plasma of equal frequency laser beams was

shown in a series of experiments [5,6]. These experiments stimulated multi-

dimensional simulations and theory that considered a variety of physical ef-

fects that influence the power transfer such as self-focusing and geometry [7],
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beam intensity non-uniformity and beam deflection of overlapping beams [8],

nonlinear power transfer between different frequency beams in a homoge-

neous plasma in two and three dimensions [9,10], and power transfer between

beams that each have multiple frequencies [11] such as occurs with some beam

smoothing techniques [12].

To understand better the potential impact of cross-beam energy transfer, a

new series of experiments were performed at the University of Rochester’s

Laboratory for Laser Energetics [13]. In these experiments, heater beams ex-

ploded a foil, generating an expanding column of plasma. A pair of laser beams

were crossed in this flow where the local plasma state nears the sonic reso-

nance condition. The transmitted power in the pump and probe beams were

measured and adjusted to compensate for inverse Bremsstrahlung absorption.

Although these experiments demonstrated power transfer that verified the

underlying physics, the transfer was significantly less than that suggested by

the simulations and the theory with a linear response of the ion wave to the

ponderomotive drive. The amplification of the beam gaining power decreased

as its initial amplitude increased, suggesting a nonlinear process. Simulations

with the particle-in-cell (PIC) code, Zohar [14], in one dimension have shown

that the ion waves are indeed driven to nonlinear levels which reduces the

effectiveness of the power transfer because of kinetic effects such as nonlinear

frequency shifts [15]. Recently, a PIC-inspired model for nonlinear frequency

shifts has been used successfully to simulate the experiments provided the

interaction length is limited to less than the full interaction length [16].

However, none of the theory and simulation efforts to date incorporate all the

effects known to influence the experimental results. For example, in the exper-
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iments with plasma flow, the flow conditions satisfy the resonance condition

for forward SBS for only a fraction of the beam cross section because of flow

gradients across the beams and for only a limited duration because the flow

evolution. In addition, the flow gradients are accompanied by electron den-

sity gradients which refract each beam and dynamically move the resonance

surface.

In conjunction with the experimental work at Rochester, a numerical study

was conducted using the Adaptive Laser Plasma Simulator (ALPS) [17]. In

the ALPS code, a paraxial light model is coupled to a nonlinear, quasineutral

fluid representation of the plasma. This model is capable of representing the

hydrodynamic-scale velocity and density gradients and finite-beam interaction

effects, but not kinetic nonlinearity of the ion waves. The numerical experi-

ments initialized the plasma conditions with a self-similar rarefaction fan with

a stationary sonic line. Unfortunately, the numerical solutions were unable to

replicate the nonlinear saturation seen in the exploding-foil experiments – a

result consistent with the hypothesis that the nonlinear saturation mechanism

is a kinetic effect not modeled in the fluid equations. However, the numerical

results regularly demonstrated an unexpected transient suppression of the en-

ergy transfer for plasma flows with large initial gradients relative to the beam

diameters.

To further investigate this effect and to reduce the computational expense, we

have developed the numerical model described in this paper, which demon-

strates the same transient gain suppression. The mathematical model is a

coupled-mode (3-wave) system similar to those used to study other plasma

parametric instabilities, but specialized to this particular problem. We con-

sider the interaction of pump and probe laser beams crossing in a quasineu-
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tral plasma freely expanding into a vacuum as shown in Figure 1. We assume

that the beams have the same frequency and diameter and that the beams

co-propagate with a small angle between them. This latter constraint allows

for the use of a time-enveloped, paraxial description of the evolution of the

complex light wave amplitudes similar to that used in the ALPS code. The

plasma flow is modeled as a time-dependent, one-dimensional linearization

about a self-similar, continuum rarefaction flow. We assume a harmonic form

for the ion acoustic perturbations that nominally satisfy the three-wave reso-

nant condition,

ω0 − ω1 = 0 ≈ ± |k0 − k1| cs + (k0 − k1) · v, (1)

where ω0 and ω1 are the pump and probe frequencies, respectively; k0 and

k1 are the pump and probe wavenumber vectors respectively; cs is the ion

acoustic speed; and v is the flow velocity. The discretized coupled-mode system

is integrated in time using a differential algebraic system solver.

The assumption of a self-similar expansion allows the plasma flow to be char-

acterized by a single parameter, L⊥, the transverse velocity scale length. When

the ion acoustic perturbations have a length scale much smaller than L⊥, and

in the limit of strong acoustic damping, the acoustic system reduces to an alge-

braic equation for the complex density perturbation amplitude in terms of the

enveloped laser field amplitudes; this is a modest extension of the Rosenbluth

gain formula [18]. At the other extreme, for problems in which the background

scale length L⊥ approaches the beam width or less, we will show that the

motion of the beams due to their refraction in the evolving density profile in-

troduces a temporal phase shift that modifies the resonant condition (1). The

fact that time-dependence in background scattering media can affect the gain
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rate for parametric instabilities was demonstrated in [19,20], in the latter case

for backward stimulated Brillouin scattering in a one-dimensional, isothermal

rarefaction. The analogous result presented here provides a quantitative de-

scription of this effect for the crossed beam scenario, and we have chosen to

focus on this phenomenon in this paper instead of other gain modifying effects

such as pump depletion or particle trapping.

In Section 2, we present the coupled-mode model. After some simplifications,

a formula for the steady-state probe gain is presented. The numerical methods

used to integrate the full, coupled mode system are described in Section 3. In

Section 4, we present numerical results obtained using the model, with a final

discussion in Section 5.

2 Theoretical Model

Consider the standard Euler-Poisson fluid model for a quasineutral plasma.

For electron and ion number densities ne and ni, respectively, the Poisson

equation for the electrostatic potential φ is

ε0∇2φ = e(ne − Zni) ≈ 0, (2)

where ε0 is the permittivity of free space, e is the fundamental charge, and

Z is the ionization state. Quasineutrality (ne ≈ Zni) is a suitable assumption

for length scales much larger than the Debye length, and this approximation

allows one to describe the plasma dynamics using the fluid equations for a

single agglomerated species.

We denote by n ≡ ni ≈ ne/Z the number density; v the velocity vector; p
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the pressure; m the composite mass per particle; and fp(n, E) the specific

ponderomotive force due to the laser electric field E . Furthermore, we allow

for the effects of a damping force d(v) on the plasma; the exact form for

this damping will remain unspecified momentarily. Conservation of mass and

momentum are thus expressed by

∂tn+ (v · ∇)n+ n∇ · v = 0, (3a)

∂tv + (v · ∇)v +
1

mn
∇p = f + d. (3b)

For an equation of state, we assume an ideal gas in local thermodynamic

equilibrium (p = nKT ) with an additional constraint of either isothermality

or adiabaticity; this gives the differential relationship

dp = mc2a dn. (4)

in lieu of a transport equation for energy. Note the limitation in this treatment

of the plasma energy as it neglects any plasma heating due to laser absorp-

tion or damping of ponderomotively driven flows. For sufficiently high plasma

temperatures, it is expected that these heating mechanisms are higher-order

effects.

Under such assumptions, for an isothermal plasma, c2a = KT/m is a con-

stant isothermal sound speed, and for an adiabatic plasma, p ∝ nγ, and

c2a = γKT/m is the isentropic sound speed. Taking γ → 1 reproduces the

isothermal result. Thus, without loss of generality, we will work with the adi-

abatic form and recover the isothermal result by setting γ = 1.

The ponderomotive force f is a “light pressure” that pushes electrons (and

subsequently ions via the electrostatic field) down gradients in light intensity.

Since the ion-acoustic response of the plasma is a relatively slow phenomenon,
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we consider time scales much larger than the period of the time-harmonic

light oscillation 2π/ω. The ponderomotive force expressed as a time-averaged

quantity over this period is

fp = − Ze2

2memω2
∇〈|E|2〉ω = −Fp∇〈|E|2〉ω, (5)

where me is the electron mass.

Direct consideration of the wave equation for the composite electric field E

is unrealistic numerically, given the rapid temporal and spatial variation of

the field relative to the scales of the flow evolution and laser beam widths.

Therefore, defining x to be the dominant direction of light propagation, E is

assumed to be time-harmonic and enveloped about a transversely-averaged

wavenumber kη0,

E(t, x,x⊥) = 1
2
P [E(t, x,x⊥) exp {−iωt+ ikη̄0(x− x0)}+ c.c.] , (6)

where P is the constant polarization; k = ω/c is the free-space wavenumber;

c is the speed of light; η0(x) is the index of refraction averaged over the trans-

verse directions x⊥; and

η̄0 =
1

x− x0

x∫
x0

η0(x
′)dx′ (7)

is the index of refraction averaged over the distance (x− x0).

The index of refraction η is related to the plasma density by η2 ≡ 1− n/nc,

where nc = ω2ε0me/e
2 is the critical density. Further assuming one-way prop-

agation at small angles to the longitudinal direction x, the complex-valued

envelope E will satisfy a paraxial wave equation in the x-direction,

∂xE =
i

2kη0

∇2
⊥E +

ik2

2kη0

(η2 − η2
0)E − νcE, (8)
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where νc is a collisional absorption rate and ∇2
⊥ is the two-dimensional Lapla-

cian over the transverse directions x⊥.

2.1 Three-Wave Resonance

We reduce the problem from the governing equations for the plasma (3) and

electric field (8) to a set of coupled wave equations. The plasma flow field is

assumed to be a perturbation imposed upon a large-scale background flow:

n = n0 + δn, v = cs (M0 + δM) , and p = p0 + δp, (9)

where cs is a characteristic sound speed. It is assumed that |δn| � n0, |δp| �

p0, and |δM| � 1. For either isentropic or adiabatic flow, it can be shown

that substituting (9) into (4) and grouping terms of similar order leads to the

relationships

dp0 ≈ mc20dn0 and δp ≈ mc20δn, (10)

where c20 = γp0/(mn0). Details are provided in Appendix A.

Before substituting (9) into (3) to derive perturbation equations, a form must

be assumed for the damping force. This force is meant to represent the effect of

linear Landau damping, a nonlocal phenomenon that is most easily expressed

in Fourier space. Since the forcing of the plasma by the beat wave of the

crossing laser beams will be confined to a narrow spectrum of wave numbers

about (k0 − k1), a simpler model tuned to the correct Landau damping rate

for that wavenumber band will be adopted. We choose

d(v) = −νa(v − v0) = −2νacsδM, (11)

that is, the damping (drag) force resists perturbations from the background
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flow. These perturbations relax to the background flow over a characteristic

time 1/νa, the inverse of the damping rate. 1

Substituting (9), (10), and (11) into (3) and collecting terms of like order

(neglecting products of small quantities) produces two sets of equations,

(∂t + csM0 · ∇)n0 + csn0∇ ·M0 = 0, (12a)

cs (∂t + csM0 · ∇)M0 + c20∇(lnn0) = 0, (12b)

and

(
1

cs
∂t + M0 · ∇

)
δn

n0

+∇ · δM = −δM · ∇(lnn0)− 2(∇ ·M0)
δn

n0

, (13a)(
1

cs
∂t + M0 · ∇ +

2νa

cs

)
δM+

c20
c2s
∇ δn

n0

=

fp
c2s
− (γ − 1)

c20
c2s
∇(lnn0)

δn

n0

− δM · ∇M0.

(13b)

The first set of equations describes the evolution of the background flow, and

the second describes the evolution of the perturbations driven by the pon-

deromotive force. In grouping terms, we have assumed that the ponderomo-

tive force is suitably small that it contributes no leading-order effect on the

background flow.

We now assume that perturbations possess a spatially harmonic factor. Defin-

ing the wavenumber of the acoustic perturbation to be ka, the perturbations

1 Technically, this assumption introduces small conservation errors. As a closed

system, any momentum and energy lost by the ion acoustic wave through internal

damping processes remains in the plasma and should appear in the background flow.

However, these momentum and energy losses are small relative to the background

flow energy and momentum and thus are reasonably negligible in our approximation.
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are

δn

n0

=
1

2
(n̂+ c.c.) =

1

2
(ñ(x, t) exp{ika · x}+ c.c.) , (14a)

δM =
1

2
(M̂ + c.c.) =

1

2

(
M̃(x, t) exp{ika · x}+ c.c.

)
. (14b)

Similarly, the electric field envelope satisfying (8) is assumed to be composed

of two fields with harmonic factors:

E = Ê0(t,x) + Ê1(t,x) (15a)

= Ẽ0(t,x) exp {ik0 · x}+ Ẽ1(t,x) exp {ik1 · x} . (15b)

We define the primary harmonic factor of the light wave interaction to be

φ∆(t,x) ≡ exp{i(k0 − k1) · x}. (16)

Substituting (15) into (5) and neglecting higher harmonics,

fp ≈ −F∇


∣∣∣Ê0

∣∣∣2 +
∣∣∣Ê1

∣∣∣2
2

+

(
Ẽ0Ẽ

∗
1

2
φ∆(t,x) + c.c.

) , (17a)

= −F
2

[
∇
(∣∣∣Ê0

∣∣∣2 +
∣∣∣Ê1

∣∣∣2)
+
([
∇(Ẽ0Ẽ

∗
1) + i(k0 − k1)Ẽ0Ẽ

∗
1

]
φ∆(t,x) + c.c.

)]
,

(17b)

Substituting (14) and (17b) into (13), and factoring out the harmonic variation
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of the acoustic perturbations,

(
1

cs
∂t + ika ·M0

)
ñ+ ika · M̃ = − (2∇ ·M0 + M0 · ∇) ñ− 1

n0

∇ ·
[
n0M̃

]
,

(18a)(
1

cs
∂t + ika ·M0 +

2νa

cs

)
M̃ + i

c20
c2s

kañ = −
(

(γ − 1)
c20
c2s
∇(lnn0) +

c20
c2s
∇
)
ñ

−M0 · ∇M̃− M̃ · ∇M0

− F

c2s
exp{−ika · x}∇

(∣∣∣Ê0

∣∣∣2 +
∣∣∣Ê1

∣∣∣2)
− F

c2s

[
∇(Ẽ0Ẽ

∗
1) + i(k0 − k1)Ẽ0Ẽ

∗
1

]
,

(18b)

where we have assumed the matching condition k0 = k1 + ka. To identify the

dominant terms, we must consider the various length scales in a characteristic

problem.

Several natural length scales can be distinguished. The background flow im-

poses a velocity length scale defined by

L⊥(t,x) ≡ (∇ ·M0)
−1M0 (19)

as well as a domain width L. The laser beams impose several length scales,

most notably a width or diameter D0,1(t,x) and the dominant wavelength,

2π/k. In addition, the interaction between the two beams propagating at an

angle produces, through the ponderomotive force, a density wave at length

2π/ |k0 − k1| = 2π/ |ka|, which is longer than the light wavelength. Another

intermediate length is the speckle scale length, where speckles in the beam

are caused by the lack of coherence within each beam. The speckle scale has

a characteristic length of Ls = f2π/k0 where the f -number, f = fl/D, is the

ratio of the focal length to aperture of the lens. To distinguish between the

density wave scale and the speckle scale, we can restrict the angle between the
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beams, 2θ, to be greater the the beam divergence angle, θf = tan−1(1/2f).

Physically, we are making a distinction between energy exchanges between

beams and similar internal interactions that modify the properties of each

beam that would occur even if the other beam were not present.

We limit our consideration to the interaction of two idealized beams with

smooth spatial envelopes, associating the scale of the beam envelope with

D0,1 and neglecting the speckle scale length. We further specialize to the case

where the velocity scale length, plasma domain length, and beam diameters

are all of roughly the same order of magnitude, |L⊥| ∼ L ∼ D, and the laser

wavelengths are much smaller than these lengths, e.g., k |L⊥| � 1. Finally, we

identify the perturbation scale length 2π/ |ka| as an intermediate scale such

that |ka · L⊥| � 1 � |ka| /k.

Having identified the relative sizes of the various scale lengths, we recon-

sider (18). Clearly, terms that vary with derivatives of the background flow

or the envelopes will be much smaller than terms with factors proportional to

|ka|. Neglecting such terms we find

(
1

cs
∂t + ika ·M0

)
ñ+ ika · M̃ ≈ 0, (20a)(

1

cs
∂t + ika ·M0 +

2νa

cs

)
M̃ + i

c20
c2s

kañ ≈ −iF
c2s

kaẼ0Ẽ
∗
1 , (20b)

which is a nonlinearly forced system of ODEs with variable coefficients. Mul-

tiplying through by exp{ika · x} and dividing by |ka|, this system (20) can

also be written as

(
1

iωa

∂t +
ka

|ka|
·M0

)
n̂+

ka

|ka|
· M̂ = 0, (21a)(

1

iωa

∂t +
ka

|ka|
·M0 −

i2νa

ωa

)
M̂ +

c20
c2s

ka

|ka|
n̂ ≈ − Ze2Ê0Ê

∗
1

2memω2c2s

ka

|ka|
. (21b)
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All that remains is to specify the nonlinear forcing due to the beating of the

light waves.

To derive the reduced equations for the light, we begin with the paraxial

equation (8). Since the density has the form n = n0 + δn, the difference in

indices of refraction is

η2 − η2
0 =

n̄0 − n0 − δn

2η0nc

, (22)

so (8) becomes

[
∂x −

i

2kη0

∇2
⊥ −

ik

2η0

(n̄0 − n0)

nc

+ νc +
ik

2η0

δn

nc

]
E = 0. (23)

We write δn = n0(n̂+ n̂∗)/2 and use the assumed form (15a), to obtain

[
∂x −

i

2kη0

∇2
⊥ −

ik

2η0

(n̄0 − n0)

nc

+ νc +
ik2n0

4kη0

(n̂+ n̂∗)

nc

] (
Ê0 + Ê1

)
= 0. (24)

Introducing the harmonic factors from (14) and (15b) and neglecting the

higher harmonics resulting from multiplication, we group terms by like har-

monic variation in k0 or k1. Each of these collections must equal zero inde-

pendently, and we arrive at a pair of coupled mode equations:

[
∂x −

i

2kη0

∇2
⊥ −

ik

2η0

(n̄0 − n0)

nc

+ νc

]
Ê0 = − ik

4η0

n0

nc

n̂Ê1, (25a)[
∂x −

i

2kη0

∇2
⊥ −

ik

2η0

(n̄0 − n0)

nc

+ νc

]
Ê1 = − ik

4η0

n0

nc

n̂∗Ê0. (25b)

The source terms clearly show the coupling between the light fields through

the density perturbation.

The strong-damping or steady-state resonance in the system (21) and (25) is

found by assuming that the temporal derivatives of (21) are small compared
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to the damping terms. Formally,

ka

|ka|
·M0n̂+

ka

|ka|
· M̂ ≈ 0, (26a)(

ka

|ka|
·M0 −

i2νa

ωa

)
M̂ +

c20
c2s

ka

|ka|
n̂ ≈ − Ze2Ê0Ê

∗
1

2memω2c2s

ka

|ka|
. (26b)

Considering the component of the momentum equation parallel to the acoustic

wavenumber and solving for the density perturbation,

n̂ =
1

2

ZKTe

mc2s

v̂0v̂
∗
1

v2
e

[
|ka ·M0|2

|ka|2
− c20
c2s
− i

2νa

ωa

ka

|ka|
·M0

]−1

, (27)

where v̂j ≡ eÊj/meω (j = 0, 1) are the (complex) jitter velocities due to the

pump and probe beams, respectively, and the electron thermal speed is ve =√
KTe/me. The resonance is clear by inspection: when the flow velocity parallel

to the acoustic wave vector is sonic, that is c2s |ka ·M0(t,x)|2 = c20(t,x) |ka|2,

the real part of the denominator vanishes, leaving only the damping term to

limit the amplitude of the acoustic perturbation.

How rapidly this steady state develops depends on the time scale of the back-

ground flow. In general, the background flow evolves slowly enough that its

effects on the beam propagation and hence the acoustic wave excitation are

small. The steady state then will be reached in a time on the order of the

inverse damping rate 1/νa, as this is the characteristic time over which the

transients in the initial growth of the acoustic waves will damp away. However,

when the background flow causes sufficiently rapid motion of the beams (e.g., ,

∂tn̂/νa = O(1)), the resonance (27) is modified. This point was demonstrated

in previous work [19,20] that modified the Rosenbluth gain formula [18] to

account for effects of time-dependent background flows.

We consider the case where the motion of the beams due to the background

flow evolution causes a temporal phase mismatch. For fixed beams, the pon-
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deromotive forcing is stationary in the the laboratory frame. From the frame

of a particle moving with the fluid, the forcing appears to have frequency of

ka ·M0cs. However, if the beams are moving with velocity v in the direction

of the flow due to refraction, the fluid particle would instead see a forcing

frequency of ka · (M0cs − v), which shifts the resonance.

We explicitly identify this rapid variation in the acoustic response, that is,

n̂(t,x) = ň(t,x) exp {iφa(t,x)} , (28)

and assume that this matches the effective phase variation in the ponderomo-

tive forcing. This is in spirit similar to the approach taken in [19,20], although

we neglect any wavenumber mismatch ∇φa in favor of frequency mismatch

∂tφa. We anticipate that for large flow gradients ∂tφa ∼ νa and therefore is

not negligible, while |∇φa| � |ka| and thus can be neglected to leading order.

Substituting this into (21) and assuming that time variation of ň is slow, one

finds the modified resonance condition

ň =
ZKTe

2mc2s

v̂0v̂
∗
1

v2
e

[
|ka ·M0|2

|ka|2
− c20
c2s

+
φ̇a

ωa

2ka ·M0

|ka|

−i
{

2νa

ωa

(
ka ·M0

|ka|
+
φ̇a

ωa

)
+
φ̈a

ω2
a

}]−1

, (29)

where φ̇a and φ̈a denote first and second time derivatives of the frequency

mismatch and where nonlinear terms in φ̇a have been neglected. For nonzero

frequency mismatch, the effect is to shift the location of resonance away from

the sonic condition and to alter the effective damping, which adjusts the max-

imum amplitude of the acoustic response. For the numerical simulations pre-

sented in Section 4, the frequency mismatch will only be an issue for flows

with short scale lengths.
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2.2 Two-Dimensional Simplifications

We now restrict consideration to two dimensions with a one-dimensional back-

ground flow transverse to the primary direction of beam propagation as shown

in Figure 1. We assume a configuration in which the excited ion acoustic wave

is nearly aligned with the transverse direction y. For beams initially at small,

equal and opposite angles to the direction of propagation, this is a good ap-

proximation, even with the inclusion of beam bending due to transverse den-

sity gradients. Thus, we have

M0 +
1

2

[
M̂ + M̂∗

]
=
(
M0(t, y) +

1

2

[
M̂(t,x) + M̂∗(t,x)

])
êy (30)

and ka ≈ kayêy since |kay| � |kax|. Similarly, |k0y| � |k0x|, |k1y| � |k1x|, and

|k0y| ≈ − |k1y|. We therefore take k0 ≈ k0yêy ≡ −k⊥êy and k1 ≈ k1yêy ≡ k⊥êy

such that kay = −2k⊥. Our perturbation (21) and coupled mode equations (25)

then reduce to

(
1

iωa

∂t −M0

)
n̂− M̂ ≈ 0, (31a)(

1

iωa

∂t −M0 −
i2νa

ωa

)
M̂ − c20

c2s
n̂ ≈ Ze2Ê0Ê

∗
1

2memω2c2s
, (31b)[

∂x −
i

2kη0

∇2
⊥ −

ik

2η0

(n̄0 − n0)

nc

+ νc

]
Ê0 ≈ − ik

4η0

n0

nc

n̂Ê1, (31c)[
∂x −

i

2kη0

∇2
⊥ −

ik

2η0

(n̄0 − n0)

nc

+ νc

]
Ê1 ≈ − ik

4η0

n0

nc

n̂∗Ê0. (31d)

To close this system, a one-dimensional background flow must be specified.

For lasers crossing near the entry hole of a hohlraum, the plasma flow from

the interior of the hohlraum will be expanding out into a near vacuum. A

simple analytical model of an expanding flow that satisfies the leading-order

system (12) is the one-dimensional, self-similar rarefaction. The leading-order
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system (12) together with the conditions

n0(y = 0, t) = αnc, lim
y→∞

n0(y, t) = 0, and, ∀y, t, n0(y, t) > 0,

(32)

possesses a unique similarity solution, which for y/L⊥ < 2/(γ − 1), is

n0(y, t) = αnc

(
1− γ − 1

2

y

L⊥

)2/(γ−1)

, M0(y, t) = 1 +
y

L⊥
,

c20(y, t) =
γp0

n0

= c2s

(
1− γ − 1

2

y

L⊥

)2

, L⊥(t) = L⊥(0) +
γ + 1

2
cst,

(33)

where the reference sound speed cs is now defined to be the sound speed

at the sonic line, positioned at y = 0. The isothermal result is obtained by

taking the limit as γ → 1 and significantly simplifies to c0 ≡ cs and n0 =

αnc exp (−y/L⊥). Note that the adiabatic (γ > 1) number density vanishes at

a finite distance from the center line, beyond which it is assumed to be zero.

2.3 Steady-State Gain Prediction

[Fig. 2 about here.]

If we simplify the geometry and physics of the problem even further, we can

derive an upper-bound, analytic, steady-state gain estimate of the resonant

interaction. We neglect pump depletion, diffraction, and refraction due to the

n0(y, t) density gradient, and we assume that the beams are positioned sym-

metrically at angles ±θ about the sonic line, as demonstrated in Figure 2. The

resulting equations for the enveloped light amplitudes are

[cos θ∂x − sin θ∂y + νc cos θ] Ẽ0 ≈ 0, (34a)

[cos θ∂x + sin θ∂y + νc cos θ] Ẽ1 ≈ −ik cos θ

4η0

n0

nc

ñ∗Ẽ0, (34b)

where we have identified k0x = k1xl = kη0 cos θ and −k0y = k1y = kη0 sin θ.
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Note that the wave equation for the pump beam has decoupled from the

system, but there still exists a nonlinear coupling between the probe beam

and acoustic response.

Rotating our coordinate system so that it lies along the probe beam (see

Appendix B), the PDE (34b) reduces to the ODE

[
d

dζ
+ νc cos θ

]
Ẽ1 = −ik cos θ

4η0

n0

nc

ñ∗Ẽ0, (on lines of constant ξ), (35)

where ζ = y cos θ + x sin θ and ξ = y cos θ − x sin θ. Substituting in the steady-

state density perturbation (27),

[
d

dζ
+ νc cos θ

]
Ẽ1 =

k cos θ

8η0

n0

nc

ZKTe

mc2s

|v̂0|2

v2
e

[
2νa

ωa

M0 + i

(
M2

0 −
c20
c2s

)]−1

Ê1,

(36a)

≡ k cos θ

8η0

n0

nc

ZKTe

mc2s

|v̂0|2

v2
e

Γ(ζ, ξ)Ẽ1. (36b)

Integrating across the interaction region (from ζ0 to ζ1),

Ẽ1(ζ1, ξ) = Ẽ1(ζ0, ξ) exp [−νc (ζ1 − ζ0)

+

ζ1(ξ)∫
ζ0(ξ)

k cos θ

8η0

n0

nc

ZKTe

mc2s

|v̂0|2

v2
e

Γ(ζ ′, ξ)dζ ′

 , (37)

where ζ0(ξ) is the point at which interaction begins for a given ξ and ζ1(ξ) the

point at which interaction ends.

[Fig. 3 about here.]

As shown in Figure 3, these upper and lower limits of integration are easily

found in this simplified geometry; the derivation is presented in Appendix C.

The gain along a ray of the probe through the interaction region is defined to
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be

g(ξ) ≡
∣∣∣∣∣Ẽ1(ζ1(ξ), ξ)

Ẽ1(ζ0(ξ), ξ)

∣∣∣∣∣ (38a)

= exp

−νc (ζ1 − ζ0) + Re


ζ1(ξ)∫

ζ0(ξ)

k cos θ

8η0

n0

nc

ZKTe

mc2s

|v̂0|2

v2
e

Γ(ζ ′, ξ)dζ ′


 .
(38b)

Assuming that the pump beam remains constant through the interaction re-

gion, the integral in (38) can be computed analytically for the self-similar back-

ground flow prescribed by (33). This derivation is presented in Appendix D.

For the isothermal case, the result of the integration is simply

Re


ζ1(ξ)∫

ζ0(ξ)

Γ(ζ ′, ξ)dζ ′

 =
L⊥ψr

2 sin θ
arctan

[
ψr

(νa/ωa)
2 +X(1 +X/2)

νa/ωa

]∣∣∣∣∣
X1(ξ)

X0(ξ)

,

(39)

where

X0 =
ξ −D/2

2L⊥ cos θ
and X1 =

ξ +D/2

2L⊥ cos θ
. (40)

When Dωa/(L⊥νa) � 1, it can be shown that the argument of the arctan is

small, and so

Re


ζ1(ξ)∫

ζ0(ξ)

Γ(ζ ′, ξ)dζ ′

 ≈ L⊥
2 sin θ

ψ2
r

νa/ωa

[X1(1 +X1/2)−X0(1 +X0/2)] , (41a)

=
L⊥

2 sin θ

ψ2
r

νa/ωa

D

2L⊥ cos θ

[
1 +

ξ

2L⊥ cos θ

]
, (41b)

=
D

2νa/ωa sin 2θ

1

1− (νa/ωa)2

[
1 +

ξ

2L⊥ cos θ

]
, (41c)

≈ D

2νa/ωa sin 2θ

1

1− (νa/ωa)2
, (41d)

since 0 ≤ |2ξ| ≤ D. Thus the gain is

g(ξ) = exp

[
−νc (ζ1 − ζ0) +

k

32η0

n0

nc

ZKTe

mc2s

|v̂0|2

v2
e

Dωa

νa sin θ

ω2
a

ω2
a − ν2

a

]
, (42)

which is independent of the velocity scale length L⊥.

21



3 Numerical Implementation

In this section, we describe two numerical implementations of the theoret-

ical models presented in Section 2. The first is a numerical evaluation of

the strongly-damped, steady-state gain formula (38), which makes use of

a ray-tracing algorithm to estimate the interaction region of the two laser

beams. The more sophisticated, time-dependent model is a discretization of

the differential-algebraic system of coupled mode equations (31).

3.1 Steady-State Analytic Model (SSA)

A numerical model for steady-state energy transfer can be obtained using

the formula (38) for the probe gain along rays. Approximating the interaction

region ζ0(ξ) ≤ ζ ≤ ζ1(ξ), −D/2 ≤ ξ ≤ D/2 by a parallelogram, the probe gain

can be computed using a numerical quadrature to evaluate the integral (38)

along equispaced discrete rays ξn, then summing the results.

For a plasma with uniform density, the calculation of the interaction region is

a straightforward trigonometry exercise detailed in Appendix C. In the case

of a non-uniform density, such as in the rarefaction fan considered here, the

corresponding variation of the refractive index causes a deflection of the beams

that must be taken into account in the calculation of the interaction region.

This can be accomplished by ray-tracing the beam “edges” (given, e.g., , by

the FWHM diameter for a Gaussian profile) to determine the boundaries of the

deflected interaction region. This procedure, which is described in Appendix E,

involves the numerical integration of a small system of ordinary differential

equations.
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The applicability of this semi-analytic, steady-state gain model is limited by

the various assumptions required for the derivation of the gain formula (38).

By numerically approximating the gain integral, a few of these assumptions

can be partially relaxed. For example, instead of assuming perfectly flat beams,

approximate pump and probe profiles can be incorporated in the numerical

quadrature. A limited amount of pump depletion can also be included by

wrapping an iteration loop around the gain calculation, allowing the pump

energy to relax to a more self-consistent value.

We have implemented this steady-state model in a Matlab [21] script. The

ray-tracing uses the provided explicit fourth-order Runge-Kutta method to

compute the instantaneous beam interaction region for the specified back-

ground density. As we will show in the next section, predictions by this method

can be fairly accurate in some regimes. In other cases, however, beam propaga-

tion effects and unsteady ion acoustic effects can result in substantial overesti-

mates of gain. For such problems, a more physically realistic model is required.

3.2 Time-Dependent Couple Mode Model (TDCM)

The coupled mode system (31) is a more complete model of the light propa-

gation and unsteady acoustic response. Considering a uniform grid with cells

of size hx×hy indexed by {(j,m) : j = 1, 2, . . . , N,m = 1, 2, . . . , N⊥}, we con-

struct a spatial semi-discretization of (31) for the values of the dependent

variables at the x-face centers, i.e., the cell faces perpendicular to the x direc-

tion. In particular, let n̂j,m, M̂j,m, Ê0,j,m and Ê1,j,m denote the values of n̂, M̂ ,

Ê0 and Ê1 at the center of the right-hand x-face of cell (j,m) (or left-hand

domain boundary if j = 0), respectively.
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Consequently, the ordinary differential equations for the plasma perturba-

tions (31a) and (31b) can be collocated at the x-face centers. The resulting

equations are

(
1

iωa

∂t −M0,m

)
n̂j,m − M̂j,m = 0, (43a)(

1

iωa

∂t −M0,m −
i2νa

ωa

)
M̂j,m −

c20,m

c2s
n̂j,m −

Ze2Ê0,j,mÊ
∗
1,j,m

2memω2c2s
= 0, (43b)

for j = 0, . . . , N and m = 1, . . . , N⊥. In the absence of ponderomotive ex-

citation, there are no plasma perturbations, so the initial conditions for the

perturbation amplitudes are n̂j,m(t = 0) = M̂j,m(t = 0) = 0 for each j and m.

Let η0 ≡
√

1−∑N⊥
m=1 n0,m(t)/ncN⊥ denote the refractive index computed from

the discrete transverse average of the background density n0 defined in (33),

and let νc,m, m = 1, . . . , N⊥, denote the discrete spatial absorption frequency.

We discretize the pump equation (31c) as

Ê0,j,m − Ê0,j−1,m

hx

− i

4kη0h2
y

[(
Ê0,j−1,m−1 + Ê0,j,m−1

)
(44)

−2
(
Ê0,j−1,m + Ê0,j,m

)
+
(
Ê0,j−1,m+1 + Ê0,j,m+1

)]
+

1

2

[
ik

2η0

(n0,m − n̄0)

nc

+ νc,m

] (
Ê0,j−1,m + Ê0,j,m

)
+

ik

16η0

n̂j−1,m + n̂j,m

nc

(
Ê1,j−1,m + Ê1,j,m

)
= 0,

and, analogously, the probe equation (31d) as

Ê1,j,m − Ê1,j−1,m

hx

− i

4kη0h2
y

[(
Ê1,j−1,m−1 + Ê1,j,m−1

)
(45)

−2
(
Ê1,j−1,m + Ê1,j,m

)
+
(
Ê1,j−1,m+1 + Ê1,j,m+1

)]
+

1

2

[
ik

2η0

(n0,m − n̄0)

nc

+ νc,m

] (
Ê1,j−1,m + Ê1,j,m

)
+

ik

16η0

n̂∗j−1,m + n̂∗j,m
nc

(
Ê0,j−1,m + Ê0,j,m

)
= 0,
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for j = 1, . . . , N and m = 1, . . . , N⊥. In (44) and (45), we have applied the

standard central differencing of the transverse Laplacian ∇2
⊥. As explained

in [17], the Crank-Nicholson-type discretization in the x direction ensures

that energy is algebraically conserved by the algorithm except for losses due

to absorption.

The paraxial equations are one-way wave equations, that is, they are hyper-

bolic with x as the time-like variable. Accordingly, the incident beam condi-

tions at the left-hand boundary, Ê0,0,m and Ê1,0,m, m = 1, . . . , N⊥, are initial

conditions and are prescribed by specifying the beam cross sections and prop-

agation angles relative to the x-direction. Since the simulation domain is arti-

ficially truncated, to obtain a well-posed problem, boundary conditions must

be imposed in the transverse direction by prescribing Ê0,j,0, Ê0,j,N⊥+1, Ê1,j,0,

Ê1,j,N⊥+1 for j = 1, . . . , N . We assume that the fields have zero amplitude on

these artificial transverse boundaries, which is adequate so long as the beams

do not reach the transverse boundaries.

The semi-discretized equations (43a)-(45), together with boundary conditions,

comprise a differential-algebraic system that can be formally expressed as

f(t,u(t),u′(t)) = 0, (46)
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where

u(t) ≡



{n̂j,m(t) : j = 1, . . . , N ; m = 1, . . . , N⊥}

{M̂j,m(t) : j = 1, . . . , N ; m = 1, . . . , N⊥}

{Ê0,j,m(t) : j = 1, . . . , N ; m = 1, . . . , N⊥}

{Ê1,j,m(t) : j = 1, . . . , N ; m = 1, . . . , N⊥}



≡


u1

u2

 (47)

denotes the vector of dependent variables, and u′ denotes the corresponding

vector of time derivatives. We group u in (47) by acoustic variables u1 and light

variables u2, but the specific ordering of the elements of the subvectors n̂j,m,

M̂j,m, Ê0,j,m and Ê1,j,m is unimportant, so long as the ordering is consistent

between the four subvectors of unknowns.

To advance numerically the system (46) from time tn−1 to time tn, we apply

a variable-order, variable-step backward difference formula (BDF) as imple-

mented in the differential-algebraic solver IDA [22]. For the purposes of our

algorithm description, this discretization can be written for order k in the

classical linear multistep form 2

u′n = ∆t−1
n

k∑
r=0

αn,jun−r, (48)

where un and u′n are approximations of u and u′ at time tn, respectively, and

the time step is ∆tn = tn−tn−1. The coefficients αn,r depend only on the order

k and the history of the time steps, although in practice, the coefficients αn,r

2 While the classical multistep formula is equivalent, in practice, the BDF algorithm

is expressed typically in terms of predictor and corrector interpolary polynomials

in time [23,24].
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for r = 1, 2, . . . , k are never calculated explicitly [23,24]. Only the coefficient

αn,0 =
k∑

r=1

∆tn
tn − tn−r

, (49)

needs to be known explicitly outside of the approximation (48).

Insertion of the formula (48) in (46) results in a nonlinear algebraic system

gn ≡ g(un) ≡ f(tn,un,∆t
−1
n

k∑
r=0

αn,run−r) = 0 (50)

to be solved at each time step. This nonlinear system (50) is solved using

Newton iteration

u`+1
n = u`

n + δu`
n, ` = 0, 1, . . . , (51)

where u`
n is the `th approximation of un, δu`

n is an approximate solution of

the linear system

J(u`
n)δu`

n = −g(u`
n), (52)

and J(u`
n) is the system Jacobian, i.e.,

J(un) ≡ ∂gn

∂un

=
∂fn
∂un

+
∂u′n
∂un

∂fn
∂u′n

=
∂fn
∂un

+
αn,0

∆tn

∂fn
∂u′n

(53)

evaluated at u`
n. Note that, in the Jacobian, only the coefficient αn,0 appears

explicitly, because

∂un−r

∂un

= 0, r = 1, 2, . . . , k, (54)

that is, the previous solution vectors are independent of the current solution

vector. All of the αn,r for r = 0, 1, . . . , k are implicitly involved in the compu-

tation of g(u`
n) for (52) since they are used to approximate u′n as in (50).

To describe in more detail the algorithm employed in evaluating the Newton
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update (51), we formally express the Jacobian as

J(u`
n) ≡


J11 J12

J21 J22

 =



µI−M −I 0 0

−C λI−M −ρE∗
1 −ρE0(·)∗

σE1 0 P σN

σE0(·)∗ 0 σN∗ P



, (55)

where the scalar coefficients are

µ ≡ 1

iωa

αn,0

∆tn
, λ ≡ µn +

2νa

iωa

, ρ ≡ Zme

2mc2s

(
e

meω

)2

, σ ≡ ik

4η0nc

. (56)

The NN⊥ × NN⊥ sub-blocks in J are the identity matrix I, the diagonal

matrices

M ≡ diag
(
Mn

0,m

)
, (57a)

C ≡ diag
(
(cn0,m/cs)

2
)
, (57b)

N ≡ diag
(
n̂n,l

j,m

)
, (57c)

E0 ≡ diag
(
Ên,l

0,j,m

)
, (57d)

E1 ≡ diag
(
Ên,l

1,j,m

)
, (57e)

and the discrete operator

P ≡ Dhx −
i

2k0

∆hy + νcI +
σ

2
diag

(
nn

0,m − n̄n
0

)
, (57f)

where Dhx and ∆hy represent the discrete first derivative and Laplacian opera-

tors, respectively, corresponding to the spatial discretizations in (44) and (45). 3

3 To be more precise, for j = 1, only the terms of Dhx and ∆hy for j = 1 are

included in P. The remaining terms corresponding to initial data at j = 0 are

included on the right-hand side.
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The values of the indices j and m in (57) coincide with those of the elements

of δu which they multiply, and the (·)∗ notation is intended to indicate that,

when J12 and J21 are multiplied times a vector, the factors preceding the (·)∗

multiply the conjugate of the corresponding vector elements.

The linear system (52) for the Newton correction is itself solved iteratively

during each Newton iteration step via a block Gauss-Seidel algorithm, which

only requires the multiplication of J12 and J21 times vectors. Writing (52) in

block form as 
J11 J12

J21 J22




δu`

n,1

δu`
n,2

 = −


g`

n,1

g`
n,2

 , (58)

we perform the iteration

δu`,q+1
n,1 = −J−1

11

(
g`

n,1 + J12δu
`,q
n,2

)
(59a)

δu`,q+1
n,2 = −J−1

22

(
g`

n,2 + J21δu
`,q+1
n,1

)
(59b)

for q = 1, 2, . . ., where, for example, J11 = J11(u
`
n) and (δu`,q

n,1, δu
`,q
n,2) is the qth

approximation of the Newton correction δu`
n. The application of J−1

11 in (59a) is

a trivial operation, since the matrix J11 can be re-ordered as a block diagonal

system with 2×2 blocks. The application of J−1
22 in (59b) is more complicated,

however, since it requires the solution of the coupled-mode system (44)-(45)

with a non-zero right-hand side. The coupled-mode system (44)-(45) is solved

by a sweeping algorithm beginning at the left boundary and solving a sequence

of linear systems for the planes of unknowns corresponding to successive values

of j. These linear systems are solved using a block-Jacobi algorithm, where a

tridiagonal linear system solver is used to invert the diagonal blocks.

Hence, the solution of the nonlinear system (50) at each time step via the
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algorithm just described involves three levels of nested iteration: the Newton

iteration (51), the block-Gauss-Seidel iteration (59), and the block-Jacobi it-

erative solution of the linear systems solved in the sweeping algorithm used

to apply J−1
22 in each step of (59b). This raises the issue of sensible conver-

gence tolerances for each of the iterative processes. In applying this algorithm

to the problems described in the next section and others, we have observed

that the convergence of the J−1
22 iteration is typically quite rapid, achieving

several digits of accuracy in the relative residual in few iterations. Moreover,

it is usually sufficient to perform only a single iteration of (59) to obtain rapid

convergence of the Newton iteration, using the solution at the previous time

step as the initial guess. Thus, the best general strategy is to perform only a

small number of linear system iterations to minimize the cost of each Newton

iteration. If at some point the number of Newton iterations required to reach

the desired tolerance becomes unacceptably large, tighter tolerances on the

inner linear iterations can be specified.

In our implementation of the preceding algorithm, we used the general-purpose

solver IDA (Implicit Differential-Algebraic) [22], which is available as part

of the SUNDIALS software suite from www.llnl.gov/CASC/sundials. IDA

is an ANSI C, MPI-parallel implementation of an earlier FORTRAN code

DASPK [25,26] that supports automatic time step and integration order k (up

to k = 5) adaption for the backward difference formula (48) based on user-

provided error criteria. To advance the solution, IDA controlled the Newton

update, computing u`
n by (51) and (u`

n)′ by (48). Taking u`
n, (u`

n)′, ∆tn, and

αn,0 as input from IDA, our routines implemented the inner two iterations

that solve (59), subsequently providing to IDA the Newton corrections δu`
n

needed to form the update (51).
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4 Numerical Results

We now present some numerical examples to demonstrate the behavior of the

energy transfer model in various regimes. We assume that the pump and probe

beams have the same diameter D ≡ D0 = D1 and consider a “narrow beam”

problem where D = 10λ, a “medium beam” problem where D = 100λ, and

a “wide beam” problem where D = 1000λ. For each case, we investigate the

dependence of the energy transfer upon the initial velocity scale length over

the range L0
⊥/D = 1, 5, 10 and 100.

In all of the test cases, we consider a pair of 0.351 µm-wavelength beams cross-

ing in a square domain 0 ≤ x ≤ L, −L/2 ≤ y ≤ L/2, where we take L = 7.5D.

The intensity profiles of the incident pump and probe beams at the left (x = 0)

boundary are

Ib(y) = Imax
b exp

−2

(
2 |y − ab|

D

)6

log(2)

 , b = 0, 1, (60)

respectively. Here, D denotes the full-width, half-maximum beam spot diame-

ter; a0 and a1 are the y-coordinates of the pump and probe beam spot centers,

respectively. Choosing a0 = 0.85D and a1 = −0.85D, we aim the beams at an-

gles ±12.5◦ to the horizontal (i.e., , a 25◦ angle between the beams) so as to

intersect, in the absence of plasma, at the center of the domain. The max-

imum pump and probe intensities are specified as Imax
0 = 1015 W/cm2 and

Imax
1 = 1 W/cm2, respectively. The use of a weak probe avoids pump deple-

tion in all of the test cases, including the wide beam cases that achieve the

largest gain. This allows more direct comparison with the analytic gain pre-

diction, which assumes no pump depletion.

We assume that the background plasma evolves as the adiabatic rarefac-
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tion (33) about y = 0 with γ = 5/3 and α = 0.1. The initial electron and

ion temperatures are 2.5 keV and 0.5 keV, respectively. Using the species-

averaged ionization Z = 3.5 for a CH plasma therefore yields the sound speed

cs = 4.76 × 105 m/sec, which in turn yields the acoustic frequency ωa =

2k⊥cs = 3.69 × 1012 rad/sec. The damping rate is νa = 0.1ωa, and inverse

Bremsstrahlung absorption is neglected in these simulations. The model sys-

tem is discretized as described in Section 3.2 on a spatial grid of size 10D/λ×

16D/λ, which is adequate to obtain several digits of accuracy in the probe

gain. A simulation time of 50 picoseconds is used for all runs.

4.1 Probe Gains

The primary quantity of interest in these crossed beam calculations is the

energy transfer between the beams. We characterize this by the probe gain

G ≡ 1

2
log

∫ L/2
−L/2 I1(L, y)dy∫ L/2
−L/2 I1(0, y)dy

 , (61)

which was computed at the end of each time step. The integrals in (61) denote

numerical quadratures of the probe intensity over the z = 0 entrance plane

and z = L exit plane.

The gain (61) computed by the time-dependent coupled mode (TDCM) model

is compared with the steady-state, analytic (SSA) model (38) where the in-

tegrals are evaluated numerically, including assumed Gaussian beam pro-

files (60). It is expected that the analytic model will over-predict the energy

transfer because it fails to account for refraction and diffraction, both of which,

in this geometry, tend to direct energy away from the region of strongest in-

teraction. Of course the effects of refraction diminish with increasing velocity
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scale length, and so discrepancies at long scale lengths should primarily be

due to diffraction.

In addition, a steady-state coupled mode (SSCM) model, where the coupled

light equations (31c) and (31d) are solved using the steady state acoustic

response (27), is evaluated. This third set of computations is included as an

attempt to demonstrate the effect on energy transfer by the phenomena of

refraction and diffraction and additionally isolates important time-dependent

effects.

4.1.1 Narrow beams

[Fig. 4 about here.]

[Fig. 5 about here.]

We consider first a pair of beams with D = 10λ. In Figure 4, the probe gain

G computed by (61) is plotted as a function of time for four values of the

initial velocity scale length: L0
⊥ = D, L0

⊥ = 5D, L0
⊥ = 10D, and L0

⊥ = 100D.

The curves without circles denote the gain predicted by the TDCM code. The

curves with circles denote the predictions obtained by the SSA model. Note

that this steady-state model does in fact vary with time because it is evaluated

at each time using the time-dependent velocity scale length L⊥ given in (33).

In all four cases, the disagreement between the SSA and the TDCM gains at

early time (t < 10 ps) occurs because the steady-state model cannot predict

the transient growth of the acoustic wave, which concludes after roughly four

damping times. Beyond t = 20 ps or so, the agreement of the models is good,

although the SSA results consistently over-predict the gain. In fact, the SSA
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curves for the L0
⊥ = 5D and L0

⊥ = 10D cases appear to diverge somewhat

from the TDCM gains near 50 ps. In addition, for t < 20 ps in the shortest

scale length case, the SSA and TDCM models disagree substantially. Certainly

refraction is the main suspect, as this case starts with severe beam bending

and only a small portion of the interaction region initially overlaps with the

sonic region. By 50 ps the background scale length is approximately 10D, so

the beam bending is significantly reduced, and the agreement is better.

In Figure 5, the gain as computed using the SSCM code is plotted as curves

with diamonds. There is excellent agreement in the long velocity scale length

case where there is little refraction, which suggests that the discrepancy be-

tween the SSA gain and the TDCM result is due to diffraction. The inter-

mediate SSCM cases are similarly closer to the TDCM curves at longer times

suggesting that the curves are asymptotic to the same values. However, for the

shortest scale length case, there is still substantial disagreement in the inter-

val 10 ps . t . 30 ps, which suggests that a reduced interaction region due

to beam bending cannot be the lone cause. Surprisingly, the L0
⊥ = 5D SSCM

gain is actually higher than the SSA result for this same time interval. The

physics of the SSCM and TDCM codes differs only in the inclusion of time

derivative terms, which suggests the presence of a time dependent mechanism

that postpones the onset of a steady state and suppresses the gain.

4.1.2 Medium beams

[Fig. 6 about here.]

[Fig. 7 about here.]
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We next consider a pair of beams with D = 100λ. The length scales are all

an order of magnitude bigger than for the narrow beam case, increasing the

interaction length and thus the gain by roughly an order of magnitude. How-

ever, the time scale for the background flow (L0
⊥/cs) is an order of magnitude

slower because the reference sound speed is held fixed.

In Figure 6, the probe gains computed by the SSA and TDCM models are

again plotted as a function of time for the four values of the initial velocity

scale length. With the exception of the shortest scale length case, the two

models agree well after the initial transient period. For the L0
⊥ = D case, where

refraction is initially quite strong, there is substantial disagreement over the

entire 50 ps simulation. With the reduced time scale, the velocity scale length

in this case changes by only a factor of two over a 50 ps run and so significant

refraction occurs for the duration.

The probe gain computed by the SSCM model is presented in Figure 7. There

is better agreement between the SSCM and TDCM models as compared to the

SSA and TDCM models for the two longer scale length cases. Nevertheless, a

sizable discrepancy in the shortest scale length case is evident, and as before,

the gain in the L0
⊥ = 5D case as computed by SSCM is higher than the SSA

result. Again this points to a significant time-dependent effect causing gain

suppression that has stronger effects as the scale length decreases.

4.1.3 Wide beams

[Fig. 8 about here.]

[Fig. 9 about here.]
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Finally, we consider a pair of beams with D = 1000λ. Relative to the medium

beam case, the length scales are increased by another order of magnitude and

the background time scale reduced by another order of magnitude. The gain

should be roughly one order of magnitude higher.

We note that these wide beam calculations are very large, since a 10000 ×

16000 spatial grid was required, yielding a total of 160 million mesh cells, with

four complex dependent variables per cell. Approximately 7.5 to 16 wall-clock

hours on 400 processors of the MCR Intel GNU/Linux cluster were required to

complete 50 ps of simulation time, with the runtime increasing with decreasing

scale length. In comparison, the 25 zone numerical quadrature of the SSA

model, computed at ten intervals of five picoseconds each in a Matlab script,

took approximately 4 seconds on a single processor of the same machine.

In Figure 8, the probe gains computed by the SSA and TDCM models are

again plotted as a function of time for the four values of the initial velocity

scale length. As before good agreement between the models is seen, except in

the shortest scale length case. In Figure 9, excellent agreement between the

SSCM and TDCM models is demonstrated, with the now familiar exceptions

of the shorter scale length cases. The nature of the implicated time-dependent

effects will be identified in the next section.

4.2 Beam Motion and Frequency Mismatch

In all short scale-length cases (L0
⊥ = D), the gain computed by the TDCM

code is less than that predicted by either of the steady-state methods. This

suggests that a time-dependent mechanism exists in the short scale length case
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that postpones the achievement of steady-state. In the short scale length case,

the refraction is not only strong, but the time-dependence of the background

flow alters the refraction significantly, that is, the beams move at a significant

fraction of the sound speed. As discussed in Section 2.1, this beam motion is

believed to be a mechanism that detunes the three-wave resonance.

We first will demonstrate empirically that beam motion is closely correlated

with gain suppression. Direct consideration of the magnitude of the trans-

verse beam velocities provides further support for this explanation. By post-

processing the coupled-mode calculations, the validity of the phase-shifted

formula (29) will be demonstrated. Finally, the phase mismatch will be shown

to correspond to a shift of the resonant region, an effect that has significance

for the proper interpretation of cross-beam experiments in unsteady plasma

flows.

[Fig. 10 about here.]

As the phenomenon occurs for all beam widths, just at different rates, without

loss of generality, we consider the medium beam, short initial scale length case.

We conduct an experiment where the background flow is held fixed until tc =

20 picoseconds, after which it is allowed to resume its normal time variation,

that is,

L⊥ =


L0
⊥ +

γ + 1

2
cstc, for 0 ≤ t ≤ tc

L0
⊥ +

γ + 1

2
cst, for t ≥ tc.

(62)

Thus, the background is initially steady, and while there is refraction, there

is no beam motion. At 20 ps, the background begins to move impulsively

causing the beams to move. The TDCM gain resulting from this experiment

is plotted in Figure 10 against the steady-state SSCM gain and the TDCM
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gain computed with the unaltered background flow. After the transient, a

time suitable for those acoustic waves no longer ponderomotively forced to

damp, the gain curve for this experiment comes into agreement with with the

unaltered TDCM gain curve. This points to beam motion as the cause for the

drop in gain.

Note that, since the beam refraction is computed as an instantaneous quan-

tity given the imposed background flow, there is no memory effect inherent

in the beam motion. The damping of the acoustic waves erases memory of

past forcing, and so after several damping times, there is no lasting depen-

dence on the path of evolution. Indeed, Figure 10 demonstrates this, since the

two TDCM gain curves quickly come into agreement after the history of the

acoustic waves is damped out.

How does the beam motion alter the gain and why does it only do so in

the shortest scale length case? While the ponderomotive forcing is relatively

steady in the frame attached to the intersection of the beams, the refraction-

induced translation of the interaction region relative to the lab frame creates

an effective frequency for the forcing. Specifically, a sinusoidal forcing pattern

in y with wavenumber 2k⊥ translating relative to a fixed point with velocity

v appears as a frequency of 2k⊥v in the fixed frame. Of course, this is a crude

argument since both the fluid and the ponderomotive forcing are accelerating

(decelerating) relative to laboratory frame. Nevertheless, we assert that the

phase mismatch ∂tφa in (29) is approximately this frequency, φ̇a(t) ≈ 2k⊥ v(t).

A similar argument can be made associating ∂2
t φa with the deceleration of pon-

deromotive force. The requirement for phase mismatch terms to be important
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is that they compete with the damping term, for example,

φ̇a(t)

ωa

&
νa

ωa

⇒ v

cs
&
νa

ωa

. (63)

This relative damping rate is one tenth for the plasma considered here, so

transverse velocities of at least ten percent of the sound speed are required.

[Fig. 11 about here.]

In Figure 11, estimates of the transverse velocity of the interaction region are

plotted. These are obtained by integrating the ray equations for the rarefaction

density profile and computing the velocity of the intersection of the central

ray of each beam. In the isothermal case, an exact form for the ray trajectory

and its time derivative can be derived (See Appendix E), but for the adiabatic

equations, the system must be integrated numerically.

Note that the transverse velocity of the ray intersection point as a fraction of

the sonic line sound speed has the same evolution for each of the three beam

widths when the time is scaled by the beam diameter. From the figure it is

obvious that for the shortest scale length problem, L0
⊥ = D, the transverse

velocity is initially of the same order of magnitude of νacs/ωa. With increasing

scale length, the transverse velocity rapidly diminishes, due to the fact that

the density gradient is reduced as the velocity scale length increases. That

the behavior of the deceleration of the interaction region is very similar can

be ascertained by considering the slopes of the curves. We therefore would

expect to see the most dramatic effects of frequency mismatch in the shortest

scale length case and perhaps somewhat in the L0
⊥ = 5D case. Indeed this was

shown in Section 4.1.

Compelling a posteriori evidence of the effects of frequency mismatch can be
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obtained in a post-processed consistency check by evaluating the gain from

the analytic acoustics responses, that is, equations (27) and (29). This is done

as follows:

(1) The time-dependent, self-consistent electric and acoustic fields at some

time are obtained from the TDCM code.

(2) The gain is computed using the steady-state density perturbations (27):

(a) the acoustic response is computed from the steady-state formula (27)

using the TDCM electric fields;

(b) the electric fields are recomputed using this assumed density pertur-

bation;

(c) and the gain is computed from these new electric fields.

(3) The gain is computed using the steady-state density perturbations with

frequency mismatch (29):

(a) the acoustic response is computed from the steady-state formula with

frequency mismatch (29) using the TDCM electric fields and fre-

quency shifts approximated from the TDCM density perturbation;

(b) the electric fields are recomputed using this assumed density pertur-

bation;

(c) and the gain is computed from these new electric fields.

Step 3(a) involves computing a local estimate of the density perturbation

frequency and its time derivative. Noting that, for n̂ = |n̂| exp iφ(t),

∂tn̂

n̂
= i∂tφ+

∂t |n̂|
|n̂|

, (|n̂| > 0). (64)

We make the approximation

∂tφa ≈ ∂tφ = Im

{
∂tn̂

n̂

}
, (65)
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which is reasonable after the initial start-up transients have damped away. The

time derivative of ∂tφa is approximated using first-order finite differencing.

[Fig. 12 about here.]

The results of these post-processed gain predictions are plotted in Figure 12.

In comparison with the directly computed TDCM result, the gain calculated

using the original steady-state density formula (27) is over-predicted, as ex-

pected. The gain calculated using the modified steady-state density formula

that accounts for frequency mismatch (29), after an initial layer where the

approximation (65) is dubious, is in excellent agreement with the directly

computed TDCM gain and strongly supports the frequency mismatch theory.

Finally, careful consideration of (29) suggests that the frequency mismatch can

be interpreted as a shift of the resonant region. Without any shift, resonance

occurs where the real part of the denominator vanishes and is limited by the

small non-zero damping. In the presence of a frequency mismatch, the entire

denominator could potentially vanish, but we restrict our consideration only

to the case where the real part of the denominator vanishes. Choosing the root

closest to y = 0, this occurs at

y

L⊥
=

2

γ + 1

∂tφa

ωa

. (66)

For 0.1 ≤ |∂tφa/ωa| ≤ 1, this gives an effective shift of 3-30 µm for the short

scale length, medium beam width case. Associating the frequency mismatch

with the downward translation of the ponderomotive forcing suggests that

∂tφa ≤ 0, which corresponds to a shift into regions of slower plasma velocity.

This could be an important effect in experiments where beams are aimed to

intersect or avoid a resonance region.
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[Fig. 13 about here.]

As evidence of a downward shift of the resonance region in the L0
⊥ = D

case, consider a sequence of such problems in which the pair of beams is also

shifted downward by varying amounts. As before, we fix the background flow

for the first 20 ps and then let it vary normally. In Figure 13, the probe

gain is plotted for the original, unshifted beams (dotted lines), a 10-micron

downward shift (dash-dot line), a 20-micron downward shift (solid line), and

a 30-micron downward shift (dashed line). All four cases reach a steady-state

gain before the 20 ps cutoff. At the cutoff, when the background plasma is

again permitted to evolve, all four curves exhibit a transient response lasting

for a few picoseconds, which is approximately the characteristic damping time

ν−1
a . After this transient, the gain curves for the unshifted and 10-micron

cases are significantly lower than during the pre-cutoff interval, and the jump

in the 10-micron shifted curve is somewhat less than in the unshifted case.

The 20-micron shift curve begins to increase from about its pre-cutoff value,

whereas the gain for the 30-micron shifted beams increases dramatically after

the cutoff.

The behavior of the gain curves in Figure 13 is consistent with the hypothesis

that, prior to the cutoff, the resonance region is centered on the sonic line

because there is no beam motion, while after the cutoff the resonance region

has shifted downward as much as nearly 20 microns. The size of the resonance

shift will differ for each case because the background gradient, and thus the

transverse beam velocities change. For the unshifted and 10-micron shifted

curves, the behavior is consistent with a sudden downward shift of the reso-

nance region at the cutoff time the moves the resonance region further away

from the beam interaction region, decreasing the gains. In the 20-micron shift
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case, the gain is relatively unchanged, which is consistent with a shift of the

resonant region such that it remains within the interaction region. When the

beam pair is shifted by 30 microns, the hypothesized downward shift of the

resonance region at the cutoff apparently results in a larger overlap of the

interaction region than before the cutoff, with a corresponding gain increase.

5 Conclusions

Crossed laser beams in an expanding flow can exchange energy through a beat-

wave-driven ion acoustic wave. To predict the behavior, we have derived a

nonlinear, coupled-mode model of this process composed of a pair of temporal

ordinary differential equations describing the ion acoustic response and a pair

of paraxial light equations. Restricting the light model to two dimensions, the

numerical discretization of the coupled mode system of differential-algebraic

equations was presented in detail. To interpret the probe beam gain predic-

tions, the amplitude gains from this numerical model were compared with

gains integrated numerically from a steady-state acoustic response evaluated

using ray-traced beam positions.

A series of numerical experiments for varying beam diameters were presented

to demonstrate the effects of unsteady beam refraction on probe gain. These

numerical simulations were based on a self-similar background flow character-

ized by an initial velocity length scale L⊥, and the probe beam intensity was

purposely chosen to be small relative to the pump beam intensity to eliminate

the effects of nonlinear pump depletion in the comparisons. It was found that

when L⊥ was large compared to the beam diameters, the models produced

similar results and discrepancies were attributable to beam diffraction. How-
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ever, when L⊥ was the same order as the beam diameters, unsteady effects

in the beam propagation lead to reduced energy transfer between the beams,

and thus a large discrepancy between the steady-state and unsteady models.

This gain suppression was attributed to a phase shift detuning the three-wave

resonance and interpreted as an effective shift of the resonant region in the

flow. As such, the possible occurrence and effects of unsteady beam refraction

should be considered in the design and analysis of crossed-beam experiments

with steep initial flow gradients and significant flow evolution.

One-dimensional coupled mode models are often used to approximate and un-

derstand laser plasma interactions. In such investigations, the background

plasma is assumed frequently to be uniform. The method described here

demonstrates a numerical technique to address nonlinear coupled mode models

in two and, by extension, three dimensions with prescribed transverse plasma

gradients. Indeed, the obvious extension of the current work is to replace the

analytically prescribed background flow with experimentally measured back-

grounds or backgrounds computed using fully nonlinear hydrodynamic mod-

els. Given the constraints on computational resources, it is unlikely that any

computational tool including all of the physical plasma and laser interaction

effects will be available in the near term for rapid experimental design and

analysis. Thus, reduced numerical models like the one presented here can be

valuable tools to design and to understand future laser plasma experiments.
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A Sound Speed Perturbations

We begin with the differential relation (4). Further defining

c2a = (c0 + δc)2 = c20 + 2c0δc+ δc2, (A.1)

substitution of (9) into (4) gives

(
dp0 −mc20dn0

)
+
(
d(δp)−mc20d(δn)− 2mc0δcdn0

)
+ · · · = 0, (A.2)

where products of small terms have been omitted. Collecting terms of like

order and setting each result to zero gives

dp0 ≈ mc20dn0, (A.3a)

d(δp) ≈ mc20d(δn) + 2mc0δcdn0. (A.3b)

However, by the definition of the γ-law sound speed,

c2 =
γp

mn
, (A.4a)

c20

(
1 +

2δc

c0
+
δc2

c20

)
=

γp0

mn0

(
1 +

[
δp

p0

− δn

n0

]
− δp

p0

δn

n0

+ · · ·
)
. (A.4b)

Again equating terms of like order, we find

c20 ≈
γp0

mn0

and
2δc

c0
≈
[
δp

p0

− δn

n0

]
. (A.5)

Substituting these into (A.3b),

d(δp) ≈ mc20d(δn) +mc20

[
δp

p0

− δn

n0

]
dn0. (A.6)

Rewriting in terms of δp/p0 and δn/n0,

p0d

(
δp

p0

)
+
δp

p0

dp0 ≈ mn0c
2
0d

(
δn

n0

)
+mc20

(
δn

n0

)
dn0 +mc20

[
δp

p0

− δn

n0

]
dn0,

(A.7)
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and finally, substituting in (A.3a),

d

(
δp

p0

)
≈ γd

(
δn

n0

)
. (A.8)

We now integrate to find that

δp ≈ mc20δn, (A.9)

where the constant of integration has been set to zero, i.e., , there are no

density perturbations without corresponding pressure perturbations.

B Coordinate Transformation

It is convenient to consider the interaction region in the coordinate system

aligned with the probe beam, (ζ, ξ). Note the following transformations:

x = ζ cos θ − ξ sin θ, (B.1a)

y = ζ sin θ + ξ cos θ, (B.1b)

ζ = x cos θ + y sin θ, (B.1c)

ξ = −x sin θ + y cos θ. (B.1d)

Furthermore,

∂

∂x

∣∣∣∣∣
y

=
∂ζ

∂x

∣∣∣∣∣
y

∂

∂ζ

∣∣∣∣∣
ξ

+
∂ξ

∂x

∣∣∣∣∣
y

∂

∂ξ

∣∣∣∣∣
ζ

= cos θ
∂

∂ζ

∣∣∣∣∣
ξ

− sin θ
∂

∂ξ

∣∣∣∣∣
ζ

, (B.2a)

∂

∂y

∣∣∣∣∣
x

=
∂ζ

∂y

∣∣∣∣∣
x

∂

∂ζ

∣∣∣∣∣
ξ

+
∂ξ

∂y

∣∣∣∣∣
x

∂

∂ξ

∣∣∣∣∣
ζ

= sin θ
∂

∂ζ

∣∣∣∣∣
ξ

+ cos θ
∂

∂ξ

∣∣∣∣∣
ζ

. (B.2b)

Thus, along a line of constant ξ,

cosθ
∂

∂x

∣∣∣∣∣
y

+ sin θ
∂

∂y

∣∣∣∣∣
x

+ νc ≡
∂

∂ζ

∣∣∣∣∣
ξ

+ νc. (B.3)
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C Determination of the Integration Region

We address the limits of integration, working with dimensional quantities for

clarity. We assume symmetry and neglect refraction, so the region of interac-

tion, as shown in Figure 3, is the diamond abcd with diagonals aligned with

the (x, y) axes. By (37), for a given ξ, we seek to integrate from edge ab to edge

bc to obtain the amplitude of the probe along that ξ-ray after the integration.

The equations for lines ζ0(ξ) and ζ1(ξ), which define the beginning and end of

the interaction region, respectively, can be obtained from simple geometry.

The length of the side of the diamond Dd is found from the relation between

the sine of an angle and the legs and hypotenuse of a right triangle:

D = Dd sin 2θ ⇒ Dd =
D

sin 2θ
. (C.1)

The length of the longer diagonal of the diamond dL is obtained from the law

of cosines,

dL =
√

2D2
d [1− cos (π − 2θ)], (C.2a)

= D

√
[1 + cos 2θ]

2 sin2 θ cos2 θ
, (C.2b)

= D csc θ. (C.2c)

Similarly, the shorter diagonal dS is

dS =
√

2D2
d [1− cos (2θ)], (C.3a)

= D

√
1− cos 2θ

2 sin2 θ cos2 θ
, (C.3b)

= D sec θ. (C.3c)

Since both coordinate systems are collocated with the center of the diamond,

we can easily determine the coordinates of each vertex in either frame, as
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listed in Table 1.

[Table 1 about here.]

Each pair of points uniquely determines a line. The ζ-coordinate of lower limit

in terms of ξ is

ζ0 + 1
2
D tan θ

ξ + 1
2
D

=
− cot θ + tan θ

2
⇒ ζ0(ξ) = −2ξ cos 2θ +D

2 sin 2θ
. (C.4)

Similarly, the upper limit is

ζ1 − 1
2
D cot θ

ξ + 1
2
D

=
tan θ − cot θ

2
⇒ ζ1(ξ) = −2ξ cos 2θ −D

2 sin 2θ
. (C.5)

D Integration of the Exponent

Returning to (37), for a given ξ, the gain across the interaction region is

given by (38). We seek to determine the functional form of the integral in

the exponent. We note that M0 = M0(ζ, ξ) and c0 = c0(ζ, ξ) and neglect

ζ-variation in Ẽ0 such that

I(ξ) ≡
ζ1(ξ)∫

ζ0(ξ)

Γ(ζ ′, ξ)dζ ′ =

ζ1(ξ)∫
ζ0(ξ)

[
2νa

ωa

M0 − i

(
M2

0 −
c20
c2s

)]−1

dζ ′. (D.1)

Make the change of variables

X =
y

L⊥
=

[
sin θ

L⊥
ζ ′ +

cos θ

L⊥
ξ

]
⇒ dX =

sin θ

L⊥
dζ ′. (D.2)

Then

I(ξ) =
L⊥
sin θ

X1(ξ)∫
X0(ξ)

[
2νa

ωa

M0(X, ξ)− i

(
M2

0 (X, ξ)− c20
c2s

(X, ξ)

)]−1

dX. (D.3)

Without loss of generality, we substitute the adiabatic background expan-

sion (33) into (D.3); the isothermal result can be recovered by taking γ = 1
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in the result. Making this substitution, we obtain

I(ξ) =
L⊥
sin θ

X1(ξ)∫
X0(ξ)

[
2νa

ωa

(X + 1)− iX

([
1−

(
γ − 1

2

)2
]
X + (γ + 1)

)]−1

dX.

(D.4)

Defining

f(X) ≡
[
1−

(
γ − 1

2

)2
]
X +

γ + 1

2
(D.5)

and

ψ ≡
[(
γ + 1

2

)2

−
(
νa

ωa

)2

+ i
(γ2 − 1)

2

νa

ωa

]−1/2

, (D.6)

the solution is

I(ξ) =
L⊥
sin θ

ψ arctan
[
ψ
{
νa

ωa

− if(X)
}]∣∣∣∣X1(ξ)

X0(ξ)

. (D.7)

To determine the real part of (D.7), first note that, for x, y ∈ R,

arctan [x+ iy] =
1

2
arctan

[
2x

1− x2 − y2

]
+ i

1

4
ln

[
x2 + (y + 1)2

x2 + (y − 1)2

]
+ nπ,

(D.8a)√
x+ iy = ±

√
2

2

(√√
x2 + y2 + x+ i

√√
x2 + y2 − x

)
, (D.8b)

where n is any integer. Thus,

ψ ≡ ψr + iψi (D.9a)

=

√
2

2r

√
r +

(
γ + 1

2

)2

−
(
νa

ωa

)2

− i

√
2

2r

√
r −

(
γ + 1

2

)2

+
(
νa

ωa

)2

, (D.9b)

where

r2 ≡
[(
γ + 1

2

)2

−
(
νa

ωa

)2
]2

+

[
νa

ωa

(γ2 − 1)

2

]2

, (D.10)

and so

I(ξ) =
L⊥
sin θ

(ψr + iψi) arctan
[(
ψr
νa

ωa

+ ψif(X)
)

+i
(
ψi
νa

ωa

− ψrf(X)
)]∣∣∣∣X1(ξ)

X0(ξ)

. (D.11)
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Therefore,

Re {I(ξ)} =

L⊥
2 sin θ

(
ψr arctan

[
2 (ψrνa/ωa + ψif(X))

1− (ψrνa/ωa + ψif(X))2 − (ψiνa/ωa − ψrf(X))2

]

−ψi

2
ln

[
(ψrνa/ωa + ψif(X))2 + (ψiνa/ωa − ψrf(X) + 1)2

(ψrνa/ωa + ψif(X))2 + (ψiνa/ωa − ψrf(X)− 1)2

])∣∣∣∣∣
X1(ξ)

X0(ξ)

. (D.12)

For an isothermal plasma, ψi = 0, and the real component of the integral

reduces to

Re {I(ξ)} =
L⊥

2 sin θ
ψr arctan

[
2ψrνa/ωa

1− (ψrνa/ωa)
2 − (ψrf(X))2

]∣∣∣∣∣
X1(ξ)

X0(ξ)

, (D.13a)

=
L⊥

2 sin θ
ψr arctan

[
ψr

(νa/ωa)
2 +X(1 +X/2)

νa/ωa

]∣∣∣∣∣
X1(ξ)

X0(ξ)

, (D.13b)

=
L⊥

2 sin θ
ψr

(
arctan

[
ψr

(νa/ωa)
2 +X1(1 +X1/2)

νa/ωa

]

− arctan

[
ψr

(νa/ωa)
2 +X0(1 +X0/2)

νa/ωa

])
,

(D.13c)

where ψ−1
r =

√
1− (νa/ωa)2. We note that

X0 =
ζ0 sin θ + ξ cos θ

L⊥
=

ξ −D/2

2L⊥ cos θ
, (D.14a)

X1 =
ζ1 sin θ + ξ cos θ

L⊥
=

ξ +D/2

2L⊥ cos θ
. (D.14b)

E Isothermal Ray Traced Solution

Given the one-dimensional, self-similar rarefaction flow (33), a ray-traced

model can approximate the beam paths and the motion of the interaction

region. The two-dimensional ray-traced equations for propagation through a
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flow in the y-direction reduce to

dy

dx

∣∣∣∣∣
t

=
q

cos θ0

, y(x0, t) = y0, (E.1a)

dq

dx

∣∣∣∣∣
t

=
1

2 cos θ0

∂η2

∂y

∣∣∣∣∣
t

, q(x0, t) = sin θ0, (E.1b)

where y(x, t) is the ray height at horizontal location x and time t, q is propor-

tional to the normal to the wavefront, (x0, y0) is the initial location of the ray

at angle θ0 from the horizontal, and η is the index of refraction given by

η2 = 1− n0(y, t)

nc

. (E.2)

For an adiabatic flow, the ray-tracing equations (E.1) must be integrated

numerically as a system of ordinary differential equations. However, in the

isothermal case,

η2 = 1− α exp
(
− y

L⊥

)
, (E.3)

and the ray-tracing equations (E.1) can be solved analytically.

Differentiating (E.1a) with respect to x and substituting in (E.1b),

∂2y

∂x2

∣∣∣∣∣
t

=
1

2 cos2 θ0

∂η2

∂y

∣∣∣∣∣
t

, (E.4a)

y(x0, t) = y0,
∂y

∂x

∣∣∣∣∣
t

(x0, t) = tan θ0. (E.4b)

Define

u(y, t) ≡ ∂y

∂x

∣∣∣∣∣
t

⇒ ∂2y

∂x2

∣∣∣∣∣
t

=
∂u

∂x

∣∣∣∣∣
t

=
∂x

∂y

∣∣∣∣∣
t

∂y

∂x

∣∣∣∣∣
t

=
1

2

∂u2

∂y

∣∣∣∣∣
t

. (E.5)

Substituting this into (E.4a), we have

∂u2

∂y

∣∣∣∣∣
t

=
1

cos2 θ0

∂η2

∂y

∣∣∣∣∣
t

. (E.6)

Integrating gives

u(y, t) = ±
√
u2

0 +
(η2 − η2

0)

cos2 θ0

, (E.7)
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where u0 = u(y0, t) and η0 = η(y0, t). Rewriting this in terms of y,

∂y

∂x

∣∣∣∣∣
t

= ±
√

tan2 θ0 +
α

cos2 θ0

[
exp

(
− y0

L⊥

)
− exp

(
− y

L⊥

)]
, (E.8a)

= ±
√
b− a exp

(
− y

L⊥

)
, (E.8b)

where

a ≡ α

cos2 θ0

≥ 0 and b ≡ tan2 θ0 + a exp
(
− y0

L⊥

)
≥ 0. (E.9)

The positive root of (E.8) is the unique solution that satisfies the boundary

condition at (x0, y0).

Let y = −L⊥ ln z, then (E.8b) can be written as

1

z
√
b− az

∂z

∂x

∣∣∣∣∣
t

= − 1

L⊥
, (E.10)

where the right-hand side is independent of x. Integrating,

2√
b

arctanh
[√

1− az

b

]
,=

x+ C

L⊥
, (E.11)

where the constant of integration is

C = −x0 +
2L⊥√
b

arctanh

[
tan θ0√

b

]
. (E.12)

Solving (E.11) for y, we arrive at

y = −L⊥ ln

[
b

a
sech2 ζ

]
, (E.13)

where

ζ ≡
√
b

2L⊥
(x− x0) + arctanh

[
tan θ0√

b

]
. (E.14)
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the dotted curve with circular symbols is the gain computed using the light fields
from the unsteady coupled mode code together with the acoustic response taking
into account the frequency mismatch (29). The frequency mismatch is approximated
from the acoustic response directly computed by the unsteady coupled mode code
using (65).
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Fig. 13. Medium beam case with downward shifted beams.
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Vertex (x, y) (ζ, ξ)

a (−1
2D csc θ, 0) (−1

2D cot θ, 1
2D)

b (0, 1
2D sec θ) (1

2D tan θ, 1
2D)

c (1
2D csc θ, 0) (1

2D cot θ,−1
2D)

d (0,−1
2D sec θ) (−1

2D tan θ,−1
2D)

Table 1
Vertices of the interaction region in the flow and probe beam coordinates.
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